Multi-modal Image Registration by Quantitative-Qualitative Measure of Mutual Information (Q-MI)
نویسندگان
چکیده
This paper presents a novel measure of image similarity, called quantitative-qualitative measure of mutual information (Q-MI), for multi-modal image registration. Conventional information measure, i.e., Shannon’s entropy, is a quantitative measure of information, since it only considers probabilities, not utilities of events. Actually, each event has its own utility to the fulfillment of the underlying goal, which can be independent of its probability of occurrence. Therefore, it is important to consider both quantitative and qualitative (i.e., utility) information simultaneously for image registration. To achieve this, salient voxels such as white matter (WM) voxels near to brain cortex will be assigned higher utilities than the WM voxels inside the large WM regions, according to the regional saliency values calculated from scale-space map of brain image. Thus, voxels with higher utilities will contribute more in measuring the mutual information of two images under registration. We use this novel measure of mutual information (Q-MI) for registration of multi-modality brain images, and find that the successful rate of our registration method is much higher than that of conventional mutual information registration method.
منابع مشابه
Multimodality image registration by maximization of quantitative-qualitative measure of mutual information
This paper presents a novel image similarity measure, referred to as quantitative–qualitative measure of mutual information (Q-MI), for multimodality image registration. Conventional information measures, e.g., Shannon’s entropy and mutual information (MI), reflect quantitative aspects of information because they only consider probabilities of events. In fact, each event has its own utility to ...
متن کاملOptimized co-registration method of Spinal cord MR Neuroimaging data analysis and application for generating multi-parameter maps
Introduction: The purpose of multimodal and co-registration In MR Neuroimaging is to fuse two or more sets images (T1, T2, fMRI, DTI, pMRI, …) for combining the different information into a composite correlated data set in order to visualization, re-alignment and generating transform to functional Matrix. Multimodal registration and motion correction in spinal cord MR Neuroimag...
متن کاملA Novel Subsampling Method for 3D Multimodality Medical Image Registration Based on Mutual Information
Mutual information (MI) is a widely used similarity metric for multimodality image registration. However, it involves an extremely high computational time especially when it is applied to volume images. Moreover, its robustness is affected by existence of local maxima. The multi-resolution pyramid approaches have been proposed to speed up the registration process and increase the accuracy of th...
متن کاملFeature Neighbourhood Mutual Information for multi-modal image registration: An application to eye fundus imaging
Multi-modal image registration is becoming an increasingly powerful tool for medical diagnosis and treatment. The combination of di↵erent image modalities facilitates much greater understanding of the underlying condition, resulting in improved patient care. Mutual Information is a popular image similarity measure for performing multi-modal image registration. However, it is recognised that the...
متن کاملAn Improved Mutual Information Similarity Measure for Registration of Multi-Modal Remote Sensing Images
Registration of multi-modal remote sensing images is an essential and challenging task in different remote sensing applications such as image fusion and multi-temporal change detection. Mutual Information (MI) has shown to be successful similarity measure for multi-modal image registration applications, however it has some drawbacks. 1. MI surface is highly non-convex with many local maxima. 2....
متن کامل